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Abstract—Packet classification is an important building block 

of the Internet routers for many network applications, such as 

Quality of Service (QoS), security, monitoring, analysis, and 

network intrusion detection (NIDS). In this paper, we propose 

a scheme called Layer based Search Tree (LST) to solve multi-

field packet classification problem. LST improves the 

traditional decision tree based schemes (e.g. HyperCuts and 

EffiCuts) by reconstructing the leaf nodes of the decision tree 

as an approximately balanced search tree. Since all the address 

subspace covered by each node of LST is disjoint, the buckets 

of the leaf and internal nodes in LST must not be empty. Thus, 

only the rules in one bucket can match the header values of the 

incoming packet. Searches on LST are completed immediately 

after the packet matches a rule in some internal node. In 

addition, we design the hardware search engine with pipeline 

and parallel architecture for the LST in Xilinx Virtex-5 FPGA 

environment. Because the memory usage of LST is very 

efficient, our search engine can support the ACL, FW, and IPC 

tables of 50k rules. LST search engine with dual ported 

memory can sustain the throughput of over 120 Gbps for the 

packets of minimum size (40 bytes). 

Keywords- packet classification; Pipelined Architecture; 

FPGA; decision tree;  

I.  INTRODUCTION 

The packet classification problem is to determine the 
desired action (e.g., deny or permit) that should be taken by 
the incoming packets according to the highest priority rule 
selected among a set of predefined rules. Typically, the rules 
are identified by a 5-field packet header that includes the 
source and destination IP address, the source and destination 
port, and the protocol number. Each rule is also associated 
with a priority value to distinguish the importance among 
multiple matched rules. Packet classification is an enabling 
function provided by routers for many network applications, 
such as Quality of Service (QoS), security, monitoring, 
analysis, and network intrusion detection (NIDS). In order to 
keep pace with the increase of the link rates and the growing 
size of classifiers, how to search the larger classifiers 
efficiently is an important topic in recent years. 

There are numerous solutions for packet classification. 
Among them, decision tree based algorithms, like HyperCuts 
[23] or HiCuts [9], are well-known approaches. The memory 

needed in the decision tree based schemes is used to store the 
internal nodes, leaf nodes, and the rules in the buckets 
associated with the nodes. And the lookup speed depends on 
the height of decision tree. HyperCuts builds the decision 
tree by cutting multiple dimensions at a time to obtain 
smaller tree height, but it suffers from large memory 
overhead. In this paper, we propose a novel packet 
classification scheme called Layer based Search Tree (LST). 
LST improves the existing decision tree based schemes by 
having two phases, partition phase and classification phase. 
In the partition phase, rules are partitioned into several 
buckets which are corresponding to the leaf nodes of binary 
decision tree. In the classification phase, we consider the leaf 
nodes of decision tree as sorted elements to construct an 
approximately balanced binary search tree. LST can use the 
binary decision tree which has the least number of rule 
duplications without damaging the search speed because 
speed of LST depends on the number of leaf nodes rather 
than height of the decision tree. 

Due to the high-speed link rate of router such as OC-768 
(40Gbps), software solution is hard to achieve this 
requirement. The 40Gbps means the router must processes 
40 bytes packet every 8 ns. Thus, field-programmable gate 
array (FPGA) has become a good choice for real-time 
network processor. Although many existing FPGA-based 
approaches can over 40Gbps for their throughput, the 
hardware resource (block RAM) is still a bottleneck that 
their approaches merely design for smaller or not complex 
rule table (ACL). We can implement our proposed scheme, 
layer based search tree, into FPGA with larger tables because 
our proposed scheme need less memory requirement. In this 
thesis, we also design a FPGA engine that has low hardware 
cost and still keep pace with the high throughput. 

II. RELATED WORK 

We discussed the decision-tree-based approaches HiCuts 
[9], HyperSplit [20], HyperCuts [23], and EffiCuts [27] 
because they are related to our proposed scheme. In decision 
tree based scheme, a pre-computed decision tree is built as 
follows: Suppose a node v in the decision tree contain a set 
of rules. All the rules in v are distributed into child nodes of v 
and some rules may be duplicated in more than one node. 
The rule distribution process is repeated at each child node 
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until the number of rules in each node is smaller than the 
predefined threshold. In search step, by traversing the 
decision tree we can find a set of candidate nodes. Then, the 
buckets associated with the candidate nodes can be searched 
linearly to find the highest priority rules. HyperCuts is an 
improved version of HiCuts. Each node in HyperCuts selects 
multiple fields to distribute the rules rather than one field at a 
time. Thus the height of the decision tree in HyperCuts is 
shorter than that of HiCuts. But its rule duplication may be 
larger. HyperSplit and EffiCuts are both proposed to reduce 
the memory size blowout problem. HyperSplit uses endpoint 
position instead of bit position which represents the specific 
endpoint to reduce rule duplication. EffiCuts classifies the 
rules into some subsets according to the wild cards in each 
filed and uses equi-dense cut to reduce the number of empty 
nodes. 

 There are many hardware based search engines for 
packet classification. In this section, we will introduce some 
search engines for Ternary Content Addressable Memory 
(TCAM) or Field Programmable Gate Array (FPGA). 
TCAM is a specific hardware in which each entry can store a 
ternary string containing 0, 1 or * (wildcard). Besides, all 
TCAM entries can be compared to the input headers in 
parallel in one clock cycle. But TCAMs suffer from many 
disadvantages that include high power consumption, range-
to-prefix expansion blowout, and high cost. Song et al. 
proposed an architecture called BV-TCAM [24] that 
combines the TCAM and the Bit Vector algorithm for 
multiple matching results. 

There are many approaches adopt bloom filter for search 
engine. NTLMC [8] implement the cross-product algorithm 
and bloom filter into the search engine. Besides, B2PC [19] 
uses multi-level bloom filters in decomposing multi-field 
classification to implement the search engine. 2sBFCE [18] 
also use bloom filter and it is implemented in ASIC. The 
above Bloom-Filter based schemes do not achieve the high 
link rate of OC-768 (40Gbps). 

The tree based search engines that use pipeline or parallel 
architectures can improve their throughputs. Several existing 
work [14][21][28][6][15] discusses how to implement 
decision tree based algorithms on FPGA. Two-dimensional 
Linear Dual-Pipeline [14], BiConOLP [28], and Power 
Saved HyperCuts [15] implement HyperCuts. Two-
dimensional Linear Dual-Pipeline uses several linear 
pipelines to process internal node buckets. BiConOLP 
balance the dual port memory in each pipeline stage by 
bidirectional subtree. Power Saved HyperCuts uses adaptive 
clocking unit for power saving. HyperSplit on FPGA [21] 
and Hyper-Cutting scheme [6] both implement endpoint base 
decision tree algorithm. SPMT [3] and SPSTwB [7] belong 
to the set-pruning tree based architecture. Rather than binary 

set-pruning trie [12], SPMT and SPSTwB propose set-
pruning multi-bit trie and set-pruning segment tree to reduce 
the number of memory access. Due to the large rule 
duplication problem of set-pruning tree base algorithm, both 
of the schemes partition the rule set into many groups to 
reduce the memory requirement. All of above tree based 
search engines with dual-port memory can achieve the high 
link rate of OC-768. The main reason is that they all adopt 
the parallel and pipeline architecture. 

III. RULE TABLE ANALYSIS 

In recent years, there are so many algorithms for packet 
classification. Due to the different characteristics of three 
type tables (ACL, FW, and IPC), none of the existing packet 
classification schemes can be perfectly suitable for all types 
of the tables. Thus, we will analyze the three filter sets which 
are generated by ClassBench [25] in Table I to Table III. We 
count the number of wildcards for each of the five fields 
because the wildcards imply the heavy rule duplications that 
may cause more memory usage in many existing algorithms. 
Besides, we also calculate the number of distinct field values 
for each field and use them to determine which filed is a 
better choice to perform the cutting operation. Because a 
field that contains a large number of distinct values 
represents that it has more information to be used for the 
classification process. The last column in the analysis tables 
of these figures named Summary shows the ratios of number 
of distinct field values and total number of rules or number 
of wildcards and total number of rules. Table I shows the 
results for ACL. We can see that wildcards account for 
smaller than 1% of the Source or Destination IP field. The 
source port fields in ACL are all wildcards. And the number 
of distinct field value in source and destination field is larger 
than other three fields. Thus, the source and destination IP 
field is suitable than other three fields to solve the ACL table 
because these two fields are outstanding in number of 
distinct values and wildcards. The source port is not suitable 
obviously. 

 
Table 
size 

ACL FW IPC 

Number 
of 

distinct 

field 
values 

SA 4473(44%) 8733(87%) 1557(15%) 

DA 595(6%) 3081(30%) 3105(30%) 

SP 1 9 34 

DP 108(0. 1%) 1 54 

Prot 4 5 7 

Number 
of 

wildcards 

SA 35 978(10%) 367(4%) 

DA 56 4959(50%) 225(2%) 

SP 10000(100%) 3497(35%) 8322(83%) 

DP 2792(28%) 10000(100%) 5455(55%) 

Prot 802(8%) 2506(25%) 3311(33%) 

 

Table I. Rule table analysis for 10K table 



Compared with ACL table, FW table has more number of 
wildcards. In ACL table, the ratios of wildcards in source 
and destination IP fields do not reach 1%. Different from 
ACL tables, the ratios of wildcards for FW table are about 
10% in source IP field and 50% in destination IP field. The 
ratios of distinct field values in source and destination IP 
fields are about 80% and 30% and the ratios of the other 
three fields are less than 1%. According to the number of 
distinct field values, the source and destination IP field is 
more important than the other three fields to solve the FW 
table. But these two fields also have too large number of 
wildcards. In order to solve the problem in these two fields, 
we can partition the rule set according to wildcard of source 
and destination IP fields. Each group of rule set can be easily 
solved by decision tree method or other algorithms. 

As the ACL tables, the ratios of wildcards in both source 
and destination IP fields are smaller than other three fields. 
Besides, the ratios of these two fields are larger than ACL 
but smaller than FW. Furthermore, the pattern of IPC for 
number of distinct field values is similar to that of ACL. As 
in ACL and FW, the source and destination IP fields 
obviously have more number of distinct field values than the 
other fields. So, we also focus the source and destination IP 
field in IPC. According to the above analysis, IPC rule table 
is similar with ACL rule table that they both have less 
number of wildcard and larger number of distinct field value 
in source and destination field.  But, memory usage of 
decision tree scheme for IPC is worse than ACL even if we 
divide the rule table into some subgroups by the wildcards 
for source and destination field. The result let us know that it 
surely has other factors which influence the memory usage in 
source and destination IP field. In fact, the prefix length of 
source and destination field is the key factor for why IPC 
still need more memory than ACL.  

Because the rule set has much more number of distinct 
values in source and destination IP fields than other three 
fields, we would usually select the source and destination IP 
fields to partition. And the length distribution for source and 
destination IP field is shown in Table II. The value in 
parentheses is the ratio of number of rules which has that 
prefix length in that field and total number of rules. The 10K 

rule tables of Table IV are public available in [13]. In ACL-
10K, we find out that the proportion of prefix length "32" in 
source and destination IP field is 85.6% and 82.9%, 
respectively. But, they are 38% and 46.2% in IPC-10K. No 
matter the rules is in source IP or destination IP field, the 
length of prefix in ACL is larger than 80%. But, they are 
smaller than 50% in IPC. This characteristic can be verified 
why IPC has more memory usage than ACL. Decision 
scheme for ACL rule table has less memory usage because 
most rules in source and destination IP field would not cause 
any duplication. Although the proportion of length "32" in 
source and destination IP field is 26.6% and 68.2% in FW-
10K, the ratio of wildcard are 60.9% and 25.4%. For source 
and destination IP field, total rules in wildcards and length 
"32" are 87.5% and 93.6%. This analysis shows that the rules 
in FW are almost wildcard or length "32" prefix. This is why 
grouping the rule set by wildcard field can easily reduce the 
memory usage in FW. 

IV. PROPOSED SCHEME 

Many exist works [2][5][12][19] shown that simple 
groups method can reduce rule duplication efficiently. 
EffiCuts [19] solved the memory overhead problem by 
dividing rules into some groups according to the wildcard (or 
almost wild card) fields. Our scheme also categorized the 
rules into subgroups. Because the classification capability of 
prefix fields is more effective than range and protocol fields, 
the criterion of our grouping method is only based prefix 

fields. There are four groups in the proposed scheme： 

group 1:  rules with wildcards in both source and 
destination address fields. 

group 2:  rules with wildcard only in source address field. 
group 3:  rules with wildcard only in destination address 

field. 
group 4:  rules without wildcards in both source and 

destination address fields. 
We select either group 2 or group 3 that has more rules 

than the other to merge with group 1. As a result, we have 
three groups left. Then we construct a search tree for each of 
the three groups independently. The search tree construction 
has two phases, namely partition phase and classification 
phase. In the partition phase, we construct the binary 
decision tree to partition the rules in the group into several 
buckets which exist in the leaf nodes of the binary decision 
tree. The bucket size is limited by a predefined threshold T. 
In the classification phase, all the leaf nodes in binary 
decision tree are used to build the approximately balanced 
search tree. Rather than searching from the root to a leaf 
node, searches on this tree can stop when an internal node 
may contain matched rules. Finally, we linearly search the 
bucket which is pointed by the matched node to find the best 
matching rule. To illustrate our proposed scheme, an 
example of two-dimensional (2-D) classifier is shown in 
Figure1. Each rule Ri = (Ri[1], Ri[2]) is a rectangular area in 
the 2-D address space. 

A. Partition phase 

In this phase, a binary decision tree is used to divide the 
rules into several buckets. The binary decision tree is built by 

Table II. The length distribution of source and destination IP field 

 Length ACL-10K FW-10K IPC-10K 

SA 

0 7 5672(60.9%) 556(6.2%) 

1-8 14 28 0 

9-16 0 71 457(5.1%) 

17-20 0 0 133(1.5%) 

21-24 781(8.1%) 255(2.7%) 3547(39.1%) 

24-28 0 484(5.2%) 814(9%) 

28-31 584(6%) 372(4%) 95(1.1%) 

32 8217(85.6%) 2429(26%) 3435(38%) 

DA 

0 26 2361(25.4%) 461(5.1%) 

1-8 109(1.1%) 0 0 

9-16 164(1.7%) 0 681(7.5%) 

17-20 0 0 9 

21-24 1073(11.2%) 236(2.5%) 2543(28.1%) 

24-28 51 243(2.6%) 1102(12.2%) 

28-31 223(2.3%) 122(1.3%) 66 

32 7957(82.9%) 6349(68.2%) 4175(46.2%) 

 



cutting each node independently. Each node v in the binary 
decision tree is associated with the following attributes: 
1. sp(P1[v],…, Pd[v]): the address space covered by node v, 

where d is the number of fields of the rules. The root 
node covers the entire d-dimensional address space. 

2. rule(v): the set of rules that intersect sp(P1[v], …, Pd[v]). 
3. field(v): the selected field to cut the address space of v. 
4. right(v)/left(v): the right and left child pointers of v. 
5. LF(v): the layer to which node v belongs. 
6. L(v): the set of labels from the first layer to LF(v). 

Basically, the proposed decision tree is constructed based 
on Hicuts [6]. For each node v to be partitioned in the 
decision tree, we select the field denoted by field(v) such that 
the resulting number of rule duplications is the least 
compared to cutting the node along any other fields. Fig. 2 
shows an example in 3-bit address space for a node v 
containing two rules, R1 = ([000, 001], [110, 111]), R2 = 
([000, 110], [000, 011]). If node v is partitioned along field 1 
at the first bit, the left child node u of v will contain two sub-
rules R1 = ([000, 001], [110, 111]), R2 = ([000, 011], [000, 
110]) and the right child node of v will contain only one sub-
rule R2 = ([100, 110], [000, 011]). However, if v is 
partitioned along field 2, both the left and right child nodes u 
and z of v will contain only one rule which are R2 = ([000, 
011], [000, 011]) and R1 = ([000, 001], [110, 111]), 
respectively. As a result, partitioning node v along field 2 is 
preferred. The node cutting process continues until it 
contains no larger than T rules, where T is a predefined 

threshold.  
We define a parameter, called layer such that all the 

nodes in the same layer are partitioned along the same field, 
called layer field (LF). The root of the decision tree is 
initially defined to be in layer 0. As in the example of Fig. 2, 
nodes u and z are partitioned along the same field and thus 
they belong to the same layer. If the partition field of node u 
is also field 2, both of node u’s child nodes are also collected 
in the same layer of u. In Figure 3, the layer numbers are 
shown with different colors based on the layering process 
described above. As we can see, nodes b, c, and f are 
classified in layer 1 because they are obtained by cutting 
their parent nodes along field 1. Similarly, nodes g, d, h, e, k, 
o, l, and p belong to layer 2 because they are obtained by 
cutting their parent nodes along field 2. Next, we will 
describe how to compute the label set L(v) for node v which 
is the key factor in classification phase. Initially, the label set 
of root node is set to empty, Ø . If a node and its two child 
nodes are in the same layer, its label set inherits from its 
parent node. Nodes c, d, and l in Fig. 3 are the examples for 
this case. If a node v is not in the same layer as its child 
nodes, its label set will be set to its parent’s label set 
appended to by field value of covered space in field field(v). 
For example, the label set of node f, L(f), is L(c) + P1[f] = 
11* because L(c) = L(a) = Ø  and P1[f] = 11*. Finally, if there 
are n layers in the decision tree and the label set of a leaf 
node v is of size k, then n – k *’s need to be appended. For 
example, L(c) is {11*, 11*, *} where the last don’t-care is 
finally added.  

Label set is the construction basis of classification phase. 
Besides, the rules in each bucket are arranged from high 

Figure 1. An example 2-D classifier with eight rules in 2525 

address space 

Rule Ri Ri[1] Ri[2] 

R1 [24, 31] [24, 31] 

R2 [0, 7] [16, 23] 

R3 [0, 7] [0, 7] 

R4 [12, 15] [0, 7] 

R5 [0, 15] [12, 15] 

R6 [24, 27] [16, 19] 

R7 [12, 15] [16, 31] 

R8 [24, 31] [4, 7] 

 

5-bit Field 2 

R3 

R1 

R4 

R6 

R7 

R8 

0 

16 

8 

24 

R2 

R

5 

0 16 24 8 5-bit Field 1 

z 

(Rv[1], Rv[2]) = (*, *) 
rule(v) = {R1=([000, 001],[110, 111]), R2=([000, 110],[000, 011])} 

(Ru[1], Ru[2])= (*, 0*) 
rule(u) = 
{R2 = ([000, 110],[000, 011])} 

(Rz[1], Rz[2]) = (*, 1*) 
rule(z) = 
{ R1 = [000, 001], [110, 111]} 

 
Figure 2. Node v is divided along field 2 into two child nods, u and z. 

Field(v) = 2 

u 

v 

1 

2 

2 

2 

1 

1 

1 

1 2 2 

1 1 

sp(0*, *) 
L(b) : 0* 

sp(11*, *) 
L(f) : 11* 

sp(0*, 0*) 
L(d) : 0* 

 

sp(00*, 1*) 
L(i) : 0*, 1*, 00* 

R2 

sp(0*,1*) 
L(e) : 0*, 1* 

sp(01*, 1*) 
L(j) : 0*, 1*, 01* 

R7 

sp(0*, 00*) 
L(g) : 0*, 00* 

sp(0*, 01*) 
L(h) : 0*, 01*, * 

R5 

b 

a 

sp(11*, 0*) 
L(k) : 11*, 0*, * 

R8 

sp(11*, 1*) 
L(l) : 11* 

 

sp(00*, 00*) 
L(m) : 0*, 00*, 00* 

R3 

sp(01*, 00*) 
L(n) : 0*, 00*, 01* 

R4 

sp(11*, 10*) 
L(o) : 11*, 10*, * 

R6 

Figure 3. A binary decision tree built according to rules in Table I, where the predefined threshold T = 1. 
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priority rule to low priority rule. Once the some rule is 
matched, it guarantees that the rule is the highest priority 
matching rule in that bucket. 

B. Classification Phase 

After the partition phase, the leaf nodes of binary 
decision tree are taken to construct the search tree which is 
built as balanced as possible. First, the buckets of leaf nodes 
are arranged in an array. Each bucket has a multi-field label 
set which is associated with the corresponding leaf node. The 
bucket array is ordered by projected position of leaf nodes in 
the binary decision tree on the horizontal line. Each bucket 
contains a set of rules, a label set containing k labels, and the 
address space covered by this bucket. Let L(i)[k] denote the 
kth label of the ith bucket. L(0)[j] to L(n-1)[j] is called label 
array j, where n is number of buckets and j ≤ k. Figure 4 (a) 
shows the result of bucket array from Figure 3. The original 
motivation is that we consider the label set, L(i)[0] to L(i)[k], 
as a wide identifier to be searched, where k is number of 
layers in binary decision tree and i is the index of buckets. 
Bucket array then can be binary searched by label set array. 
However, the comparison between each label set is too 
complex in the worst case because the number of labels for 
each bucket is about 2 to 9. Therefore, we propose the layer 
partitioned search tree (LPST) to solve such problem. Instead 
of comparing all labels in a label set, LPST only compares a 
single label field and sometimes it needs to check whether 
the node is matched. Each node of LPST is corresponding to 
a bucket, so the number of nodes is the same as the number 
of buckets. Besides, each node has three pointers to point to 
the subtrees that contains labels smaller than, equal to, and 
larger than the label of the node. Assume L, R, and M are the 
leftmost, rightmost, and middle indices of bucket array. For 
the creation of each node, the label array must be checked 
first. Then one of buckets in bucket array is picked to 
construct the LPST according to this label array. From j = 1 
to k, the following operations are performed. We select the 

smallest j such that that L(R)[j] to L(L)[j] are not all identical. 
Next, we find two indexes El and Er such that L(i)[j] = 
L(M)[j] for i = El to Er and L ≤ El ≤ M ≤ Er ≤ R. Thus, 
buckets bucket[R] to bucket[L] are divided into four parts: (1) 
smaller buckets bucket[L...El–1], (2) the selected bucket[Em], 
any one from buckets bucket[E1…Er], identity buckets 
bucket[E1…Em–1,Em+1…Er], and larger buckets 
bucket[Er+1…R]. Notice that the spaces covered by buckets 
bucket[E1…Er] are disjoint and so if we can find a match in 
any one, this match must be the only match in buckets 
bucket[E1…Er]. Then, a node is created to record 
bucket[Em], label field L(Em)[j], and the subspace covered 
by bucket Em. This node creation process is repeated 
recursively so that the left pointer pointing to the subtree 
created from bucket[L...El–1], middle pointer pointing to the 
subtree created from bucket[E1…Em–1,Em+1…Er], and 
right pointer pointing to the subtree created from 
bucket[Er+1…R]. Figure 5 shows the LPST construction 
algorithm.  

Figure 4 (b) shows the LPST built according to the 

buckets array in Figure 4 (a). The index of middle bucket is 4 

and this bucket will be the selected bucket (root). Then, the 

first label of bucket 4 (0*) is used to look for the smaller 

array, identical array, and larger array. Since the bucket 

whose first label is smaller than selected bucket's does not 

exist, the left pointer of root is NULL. Identical buckets 

(bucket[0…3]) which contains the identical label 0* and the 

remaining buckets are larger buckets (bucket[5…7]). Then 

middle subtree is created by middle buckets bucket[0…3] 

and right subtree is created by larger buckets bucket[5…7]. 

The middle child of root is node 2 because it is middle 

bucket in bucket[0…3]. And the subtree of node 2 is 

constructed by bucket[0,1,3]. Then, right child node of root 

node is node 6 and the subtree of node 6 is constructed by 

bucket[5,7].  Similar operations are performed to recursively 

construct the whole search tree.  
For each incoming packet, the packet headers are used to 

traverse the search tree. For each search step, the 
corresponding field is compared with the label. If the 
corresponding field is matched, the subspace of this node is 
checked to see whether the node is matched or traversal goes 
ahead to the middle direction. Otherwise, if the 

Label(i)[1]: 

Label(i)[2]: 

Label(i)[3]: 

 

Figure 4. (a) Bucket array corresponding to the leaf nodes in Figure 3  

(b) A binary search tree built according to (a) 
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R5 

(a) 

(b) 

// Construction of LST 

LPST_create(Node, L, R) { 

01 j = LabelArrayFind(L, R); //Inspect label arrays and return the 

smallest number j such that L(R)[j] to L(L)[j] are not all identical; 

02 M = (L+R+1)/2; 

03 Find two indexes El and Er such that L(El)[j] to L(Er)[j] are all 

identical. (L ≤ El ≤ M ≤ Er ≤ R). 

04 Node.index = Em such that bucket[Em] has the highest priority 

among all buckets bucket[El..Er]; 

05 Node.label = bucket[El].label(j); 

06 Node.region = bucket[El]. bucket_region; 

07 if (El > L) LPST_create (N->left, L, El – 1); 

08 if (Er > El) LPST_create (N->middle, El, Er); 

09 if (R > Er) LPST_create (N->rightt, Er+1, R); 

} 

Figure 5. Algorithm to construct LST. 



corresponding field is larger or smaller than the label of the 
node being checked, the direction of traversal would be right 
or left, respectively. If the node is matched, the rules 
associated with this node are linearly searched until a 
matched rule is found. For example, the packet header 
(00010, 10010) is used to search in Figure 4 (b) In root, the 
field 1 header matches the label (0*), but it doesn't match the 
sp(01*, 10*). So the node 2 is searched next because the 
label of 0* matches 00010. The field 2 header 10010 doesn't 
match the label (01*). Since 10010 is larger than its label 01*, 
node 3 is the next node to search. The label and subspace of 
node 3 both match the packet headers. As a result, the bucket 
of node 3 is linearly searched and R2 is the final result. 

As mentioned earlier, LPST has three groups which are 
classified by wild card. Searching three trees sequentially 
decreases the overall search performance. We can increase 
the overall search performance by maintaining the highest-
priorities in the second and third groups. Thus, most of the 
searches can be completed without searching the next group 
if the priority of matched rule in the prior group is higher 
than the next group. Besides, the decreasing order of rules in 
each bucket can also save some search times if the matching 
rule has higher priority than other rules in the bucket. 

C. Hardware Architecture 

By our grouping method, we construct the three 
separable search trees. Each search tree would be mapped to 
a search engine. Then, we parallel the search engine and use 
pipeline technique to increase the throughput. Due to our 
linear pipeline structure, it has many advantages:  

1. Each packet can be delay in a constant time. 
2. The order of packet can be maintained. 
3. One clock cycle can resolve a packet. 
Figure 6 shows the system block diagram of basic 

architecture with dual port Block RAMs. Two packets can be 

input at the same time because dual port Block RAM allows 
two packets read the data from the same Block RAM module 
simultaneously. Each packet would traverse all the three 
search engines in parallel. The packets input to the three 
search engine simultaneously and they also departure from 
the search engines at the same time. After the packet 
departure, each three search engines would output a rule ID. 
If some search engine doesn't have match rule, it will output 
the default ID. The priority resolver would select the highest 
priority rule to output. 

The Figure 7 shows the architecture for each search 
engines. If the height of search tree is N and bucket size is M, 
the corresponding search engine will be N node stages and 
M bucket stages. For the search engine, the packet needs to 
go through N node stages. The pipeline bucket address must 
be transmitted along linear pipeline stages from first stage to 
stage N. Any stages have the chance to modify the pipeline 
bucket address for transmission. If the matching rule store in 
this search engine, one of the node stage would modify the 
correct pipeline bucket address. The following stages would 
not allow modifying the transmission bucket address because 
the packet would match only one node. If the matching rule 
do not store in the search engine, the wrong pipeline bucket 
address also need to be transmitted to node stage N. Then, 
packet goes through M bucket stages according to the 
pipeline bucket address and it will output the default rule ID. 
In each bucket stage, the packet compares a rule which is at 
the pipeline bucket address and output the match rule. 

In the node stages, we need to map the search tree node 
into pipeline memories and design the delicate hardware 
circuit for dimension selection and label comparator. 

We show our data format before we explain how to 
design the node pipeline stages. The node data format is 
shown in Figure 8. We will mention the node data format in 
the following description: 

(1) Rule space covered by node: Because the nodes of 

Figure 6. System block diagram for parallel search engines 
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LST in partition phase are cut by bit, the rule space covered 
by node is consisted by prefix set. The prefix set are prefix of 
SA, prefix of DA, prefix of SP, prefix of DP, and prefix of 
Protocol. For each separable tree, some dimension may 
never be selected that the corresponding prefix of each node 
would be wildcard. For example, the third tree of LST that 
all rules have wildcards in both source and destination 
address field would never select the source and destination 
address field to cutting. Thus, if the nodes of search tree all 
contain the wildcard prefixes with same dimension, we can 
consider the wildcard prefixes as the default prefixes and do 
not need to record them. The SA and DA of prefix both 
contain 32 bit value and 6 bit mask. The SP and DP of prefix 
both contain 16 bit value and 5 bit mask. The Protocol of 
prefix is 8 bit value and 4 bit mask. 

(2) Pipeline bucket address: Due to all the nodes of 
search tree are leaf nodes of binary decision tree, each node 
of search tree records a bucket address. Each pipeline stage 
will inspect whether the node is matching or not, the pipeline 
bucket address which is contained by matched node will 
transmit to first bucket stage by stage. The address bits are 
corresponding to the number of buckets. The size is

 )buckets ofnumber (log2
 . 

(3) Left, Middle, and Right: They are the pointer 
addresses of left, middle, and right child node. Due to these 
three pointers in leaf node maybe be used to point to the 
bucket. Thus, the Right, Middle, and Left address bits are 
corresponding to the number of nodes in indicating stage or 
number of buckets. If the pipeline stage contains leaf node, 
the size of Left, Middle, and Right in this pipeline stage is

 )buckets ofnumber (log2
. Otherwise, the size is

 )stage indicatingin   nodes ofnumber (log2
. 

(4) Dimension identifier: It is a single value to indicate 
the selected dimension. If the search tree only select SA, DA, 
and DP to construct, the value 0~2 for dimension identifier 
represents SA, DP, and DP, respectively. 

(5) Label prefix length: The format of label prefix is 
"value/length". The label prefix length is the mask of label 
prefix. Because the value of label prefix can be obtained 
from "rule space covered by node", we only store the prefix 

mask. The size is 6 bits because the largest prefix value is 32 
bits that the length can be 0 to 32. 

Figure 9 shows the block diagram of single node stage. In 
order to speed up the clock rate, the operation of node is 
partitioned into two pipeline stages. Although using two 
stages to deal with one search tree level, we still can accept 
the total stages because height of search tree is not too large. 
Each node operation has three steps: 

1. Access node memory: Read memory by the input 
address (addr_in) and output mem_out which is the 
corresponding node data structure. The format of mem_out is 
shown in Figure 8. Besides, info_out is part of mem_out that 
they are Pipline bucket address, Left, Middle, and Right. 
The characteristic of info_out is that it doesn't need to be 
compared in matching unit. 

2. Matching unit: Each field of packet header is taken to 
match the corresponding prefix in "Rule space covered by 
node". signal is the bit-vector that each bit records whether 
the corresponding field prefix  is matched or not. If some 
prefix matches the corresponding field of packet header, the 
corresponding bit would be 1. Otherwise, the bit of bit-vector 
is 0. Matching unit also output label and pa. label is 
generated by extracting the value in "Rule space covered by 
node" according to the Dimension identifier and right 
shifting this value according to the Label prefix length. pa is 
generated by fetching one field value from the packet header 
according to the dimension identifier and  also right shifting 
this value according to the Label prefix length. 

3. Address Detection Unit: Address detection unit has 
two parts. One part determines the child address (addr_out) 
for the next node stage by comparing the label with pa. 
Another one part determines the pipeline bucket address 
(bucket_addr) to output. If is_match shows the node is match, 
the output bucket_addr would be the same as input 
bucket_addr. Otherwise, we we must identify output 
bucket_addr that bucket_addr is Pipeline bucket address 
which is fetched from info_in or addr_out. According to the 
singnal_in, we identify the bit vector whether the node is 
matched or not. If the node is matched, addr_out must be 
pipeline bucket address which transmits form info_in. And 
match_out must output 1. Otherwise, addr_out would be 
addr_out and match_out output 0. 

 We take two adjustments to improve the bucket stage. 
One adjustment is bucket merging. Even if we use binth to 
restrict the maximum number of rules in each bucket, each 
bucket still has different number of rules. Because the 
packets need to traverse from the first stage to the last stage, 
each stage needs to consume one clock cycle even if no rule 
needs to be compared in that stage. Thus, we can merge 
some buckets so that total rules still do not exceed the size of 
bucket. First, the bucket must sort according to the number 
of rules. The condition of bucket merging is that number of 
rules for each bucket can't exceed the bucket size after the 
bucket merging. The buckets which contain the rule 
duplication need to be merged first. We can remove the 
duplication rules from the merging bucket. Then, we merge 
the remaining buckets. We inspect the bucket from first to 
last to merge with the following buckets. After the bucket 
merging, we need to sort priority of all the rules for each 

Figure 9: The architecture of node stage 
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bucket in decreasing order of the priority. For this design, we 
do not need to compare the priority in each bucket stage 
because we can guarantee that the last matched rule has the 
highest priority. 

Another one is bucket size increasing with no responds 
time increasing. For each search tree, the number of total 
stages is not the same. The search engine which contains the 
less number of stages needs to wait for the one containing 
more stages. A block RAM size is restricted by 1024 entries. 
If some stages for the smaller search engine contains more 
than 1024 entries, we maybe can increase the bucket size to 
decrease the number of block RAM usage and the total 
stages with bucket size increasing is no larger than the 
largest one. 

Figure 10 shows pipeline stage with simple mapping for 
six uneven buckets. The method of simple mapping is that 
we sort the bucket by the size of buckets and then directly 
map the buckets in the pipeline stage in order. For this 
example, we need three bit bucket address to record the six 
buckets. Figure 11 shows the bucket pipeline mapping with 
adjusting the buckets in Figure 10. We assume that bucket 
size is five after the bucket increasing. We first find the 
buckets which contain the duplication rule to merge that 
bucket 1 and bucket 5 both have R4. Besides, the number of 
rules would be five after the bucket merging. So we merge 
the bucket 1 and 5. Then, we inspect remaining bucket to 
merge that bucket 2 and 3 can be merged with bucket 4 and 6. 
After the bucket merging, the bucket address only needs 2 
bits instead of 4 bits. 

V. EXPERIMENTAL RESULTS 

In this section, we will show our hardware performance 
and compare with other hardware based packet classification 
schemes. Our scheme is implemented in FPGA by verilog 

with Xilinx ISE 12.2 development tools. The target device is 
Xilinx Virtex-5 XC5VFX200T [28] with ‘-2’ speed grade. 

The bucket size of each search tree in different rule tables 
would be variable. We will discuss the influence of Block 
Ram usage in different bucket sizes. Table II shows the 
usage of Block Ran with variable bucket size in FW1 10K 
table. The second row is the number of rules with variable 
bucket size. We can see that the large bucket size have the 
less rule duplication and our proposed scheme cause less rule 
duplication. Even if the bucket size for each search engine is 
set to 4, the number of rules in our proposed only causes 
more 10% than number of rules in original rule table. For 
each search engine, the different bucket size leads to 
different number of Block Ram. If we decrease the bucket 
size, pipeline stages for bucket search would be less. But the 
number of node pipeline stages maybe becomes larger. 
Besides, a Block Ram has 18 bits bandwidth and 1K entries. 
Bucket size decreasing may cause more entries for each 
pipeline stages. In other word, it is possible to increase the 
number of Block Ram in each stage. For Table 6-7, bucket 
size 5, 7, and 7 for each search engine have the least number 
of Block Rams. So we choose this three bucket size to 
implement FW1 10K tables. 

Table IV shows the performance of rule duplication and 
bucket merging for 10K rule tables. The duplication ratio of 
# of rules in original rule table and # of rules in LST is 
1.06~1.68. For FW_10K, the merging ratio of (# of buckets 
before merging - # of buckets after merging) and # of 
buckets before merging is lower because buckets before 
merging are almost full. 

Figure 10. The Rule lists. 
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Number of Rules (original: 9311 rules) 10307 1005 9901 9861 9807 9769 9719 9669 9615 

Search engine 1 Number of 18K Block Ram 117 90 108 108 117 117 126 135 135 

Search engine 2 Number of 18K Block Ram 112 112 104 96 104 120 128 136 144 

Search engine 3 Number of 18K Block Ram 78 78 78 72 78 78 78 84 90 
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In table V, we show the memory usage of our proposed 
scheme for ACL1 10K, IPC1 10K and Fw1 10K table. 
Taking FW_10K for example, we can see that our proposed 
scheme needs 164.64 KB. According to the Table 6-7, the 
estimated number of Block Ram is 258 and the Block Ram 
we used is 580.5 KB (258*18Kbit). That is to say the 71.6% 
memory is empty. Thus, we use distributed Ram which 
doesn't restrict the size of bandwidth and number of entries 
instead of Block Ram for some less entries stages to increase 
the efficiency of memory usage. Table VI shows the FPGA 
resources utilization and throughput for 10K rule tables. All 
the schemes use the Xilinx Virtex-5 XC5VFX200T with -2 
speed grade and Dual-Port memories. For 40 byte per packet, 

our throughput is about 60Gbps which can achieve OC-768 
40Gbps. Our proposed scheme use about 3% Slices 
utilization and 20% Block Ram. A Block Ram unit showed 
in Table VI is 36 Kbit which contains the two smallest units. 
To compare with other two schemes, our scheme requires the 
least FPGA resources expect for FW 10K. Although the 
throughput of our scheme is a little smaller than SPSTwB [7], 
our scheme can implement the larger rule table than other 
two schemes. Hyper-Cutting [6] at most implement in ACL 
50K, FW 25K, and IPC 20K. SPSTwB is ACL 30K, FW 
15K, and IPC 20K. Our scheme can fit 50K for all the three 
tables, shown as Table VII. 

In Table VII, we adopt original the four groups, classified 
in section 4.2, for the FW and IPC 50K because merging 
group 2 or 3 to group 1 would cause large rule duplication. 
The more search engine waste more Block Ram that IPC 
50K uses more Block Ram than ACL 50K even if IPC 50K 
require less memory usage. 

In Table VIII, we also compare our design with some 
existing schemes which use the Xilinx Virtex-5 
XC5VFX200T device and dual port memory [3][14] 
[28][6][7]. Because some of them can’t fit in IPC1_10K and 
FW1_10K, we only show the result for ACL1_10K rule 
table. The slices are quite sufficient for each approach. And 
the bottleneck of the rule table size is Block Ram utilization. 
Thus, we introduce a new metric, Efficiency, as the ratio of 
throughput and the number of used Block RAMs to have a 
fair comparison. For the efficiency, our approach is the best.  

The Table IX shows the throughput comparison of many 
existing engines for packet classification. The second column 
lists the platform of each approach. Due to the rule table of 
each approach is not the same, we show number of rules 
used for each approach in third column. And the last column 
lists the throughput. Although throughput of our approach is 

Table IV. The performance of rule duplication and 

bucket merging for 10K rule tables 

 ACL1_10K FW1_10K IPC1_10K 

# of rules in 

table 
9603 9311 9037 

# of rules in LST 11098 9867 15141 

Duplication 

ratio 
1.16 1.06 1.68 

Bucket Size for 

each search tree 
12, 7, 2 5, 7, 7 13, 10, 3 

# of buckets 

before merging 
2768 2099 3245 

# of buckets 

after merging 
964 1939 1251 

Merging ratio 0.65 0.08 0.61 

 

Table V The detailed performance statistics of the proposed scheme 

for 10K rule table 

 ACL1_10K IPC1_10K FW1_10K 

Engine 

0 

Bucket Size 12 13 5 

Tree height 12 13 10 

Tree 
Memory(KB) 

37.64 38.13 12.8 

Bucket 

Memory(KB) 
181.17 212.69 63.1 

Total 
Memory(KB) 

218.81 250.82 75.9 

Engine 

1 

Bucket Size 7 10 7 

Tree height 8 12 9 

Tree 

Memory(KB) 
1.29 7.23 11.89 

Bucket 

Memory(KB) 
6.63 36.55 69.73 

Total 

Memory(KB) 
7.92 43.78 81.62 

Engine 
2 

Bucket Size 2 3 7 

Tree height 2 4 9 

Tree 

Memory(KB) 
0.017 0.19 1.84 

Bucket 

Memory(KB) 
0.026 0.33 5.28 

Total 
Memory(KB) 

0.043 0.52 7.12 

Total Memory 
usage(KB) 

226.78 295.13 164.64 

 

Table VI. The FPGA resources utilization and throughput for 

10K rule tables 

Scheme 
Rule 

Table 

Slices 

Used/ 

Available  

Block 

RAMs  

Used/ 

Available  

Frequency 

(MHz) 

Throughput 

(Gbps) 

Our 

proposed 

scheme 

ACL1 

10K 

898/30720 

(3.2%) 

95/456 

(20.8%) 
194.64 62.28 

IPC1 

10K 

924/30720 

(3.0%) 

121/456 

(26.5%) 
192.02 61.45 

FW1 

10K 

827/30720 

(2.7%) 

103/456 

(22.6%) 
196.95 63.05 

Hyper-

Cutting 

scheme [6] 

ACL1 

10K 

3290/30720 
(10.7%) 

171/456 
(37.5%) 

161.76 50.55 

IPC1 

10K 

6041/30720 
(19.6%) 

318/456 
(69.7%) 

161.63 50.51 

FW1 

10K 

3613/30720 

(11.7%) 

269/456 

(58.9%) 
161.20 50.38 

SPSTwB 

[7] 

ACL1 

10K 

1576/30720 

(5.2%) 

182/456 

(39.9%) 
207.98 64.99 

IPC1 

10K 

1250/30720 

(4.1%) 

243/456 

(53.3%) 
208.46 65.14 

FW1 

10K 

623/30720 
(2.1%) 

114/456 
(25%) 

212.6 66.44 

 



smaller than SPSTwB, the efficiency of our approach is 
larger than SPSTwB, shown as Table 6-12. 

 

VI. CONCLUSION 

In this paper, we propose a scheme, named layer based 
search tree (LST), to solve multi-field packet classification 
problem. There are two phase, partition phase and 
classification phase. In partition phase, we map the given 
classifier into the binary decision tree by layering process. In 
classification phase, we collect all the leaf nodes of binary 
decision tree to construct the binary search tree. For each 
incoming packet, search in LST is immediately finished 
without searching the entire search tree if the packet matches 

the space covered by the node. To further improve the 
average classification speed in multiple groups, we use 
highest-priority variable to skip the search in some groups. 
Although software solution for packet classification problem 
is more flexible, the throughput is hard to keep pace with the 
rapid growth of Internet traffics that routers needs to achieve 
the high link rate such as OC-768 (40Gbps). Thus, we design 
the hardware search engine with pipeline and parallel 
architecture for the LST. Based on Xilinx Virtex-5 FPGA 
device, our search engine can support 50k rule table for ACL, 
FW, and IPC. Besides, we can achieve over 120 Gbps 
throughput with dual port memory. 

REFERENCES 

[1] H. J. Chao, “Next generation routers,” Proceedings of 

the IEEE, vol. 90, no. 9, pp. 1518-1558, Sep. 2002. 

[2] Y. K. Chang, “Efficient Multidimensional Packet 

Classification with Fast Updates,” IEEE Transactions 

on Computers, vol. 58, no. 4, pp. 463-479, Apr. 2009. 

[3] Y. K. Chang, Y.-S. Lin, and C.-C. Su, "A High-Speed 

and Memory Efficient Pipeline Architecture for 

Packet Classification," IEEE Symposium on Field-

Programmable Custom Computing Machines, pp.215 

- 218, 2010. 

[4] Y. K, Chang and H.-C. Chen, "Layered Cutting 

Scheme for Packet Classification," The IEEE 25th 

International Conference on Advanced Information 

Networking and Applications (AINA-2011), 2011. 

Approach

es 

Slices 

Used/ 

Available  

Block 

RAMs 

Used/ 

Availab

le  

Frequ

ency 

(MHz

) 

Throu

ghput 

(Gbps) 

Efficie

ncy 

(Throu

ghput/ 

Block 

Rams) 

Our 

approach 

1796/30720 
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Table VIII. The comparison in Virtex-5 environment with 

ACL_10K rule table.  

 Table IX. The throughput comparison of many existing engines for 
packet classification. 

Approaches Platform 
# of 

rules 

Throughput 

(Gbps) 

SPSTwB[7] 
Virtex-5 

XC5VFX200T 
9,603 129.99 

Our approach 
Virtex-5 

XC5VFX200T 
9,603 124.57 

SPMT[3] 
Virtex-5 

XC5VFX200T 
9,603 108.14 

Hyper-Cutting 

scheme[6] 

Virtex-5 

XC5VFX200T 
9,603 101.1 

Two-

dimensional 

Linear Dual-

Pipeline[14] 

Virtex-5 

XC5VFX200T 
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HyperSplit on 
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BiConOLP[28] 
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ASIC 3300 13.6 

NTLMC[8] Evaluate 12507 12.16 

Power Saved 
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Table VII. The detailed performance for three rule 50K tables 
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50K 

FW1 

50K 

IPC1 

50K 

Engine 

1 

Tree Memory (KB) 100.89 65.76 48.27 

Bucket memory (KB) 1006.23 777.11 590.16 

Engine 

2 

Tree Memory (KB) 1.93 23.19 42.97 

Bucket memory (KB) 12.92 173.07 224.2 

Engine 

3 

Tree Memory (KB) 0.13 82.43 13.76 

Bucket memory (KB) 0.79 630.66 73.24 

Engine 

4 

Tree Memory (KB) - 3 0.41 

Bucket memory (KB) - 9.2 1.23 

Total Memory usage(KB) 1122.88 1761.36 994.22 

Slices 

Used/Available (utilization) 
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