
Building Balanced Search Tree based on Layered Decision Tree for Packet

Classification

Yeim-Kuan Chang

Department of Computer Science and Information

Engineering

National Cheng Kung University

Tainan, 701, Taiwan

ykchang@mail.ncku.edu.tw

Chao-Yen Chien

Department of Computer Science and Information

Engineering

National Cheng Kung University

Tainan, 701, Taiwan

p76994026@ mail.ncku.edu.tw

Abstract—Packet classification is an important building block

of the Internet routers for many network applications, such as

Quality of Service (QoS), security, monitoring, analysis, and

network intrusion detection (NIDS). In this paper, we propose

a scheme called Layer based Search Tree (LST) to solve multi-

field packet classification problem. LST improves the

traditional decision tree based schemes (e.g. HyperCuts and

EffiCuts) by reconstructing the leaf nodes of the decision tree

as an approximately balanced search tree. Since all the address

subspace covered by each node of LST is disjoint, the buckets

of the leaf and internal nodes in LST must not be empty. Thus,

only the rules in one bucket can match the header values of the

incoming packet. Searches on LST are completed immediately

after the packet matches a rule in some internal node. In

addition, we design the hardware search engine with pipeline

and parallel architecture for the LST in Xilinx Virtex-5 FPGA

environment. Because the memory usage of LST is very

efficient, our search engine can support the ACL, FW, and IPC

tables of 50k rules. LST search engine with dual ported

memory can sustain the throughput of over 120 Gbps for the

packets of minimum size (40 bytes).

Keywords- packet classification; Pipelined Architecture;

FPGA; decision tree;

I. INTRODUCTION

The packet classification problem is to determine the
desired action (e.g., deny or permit) that should be taken by
the incoming packets according to the highest priority rule
selected among a set of predefined rules. Typically, the rules
are identified by a 5-field packet header that includes the
source and destination IP address, the source and destination
port, and the protocol number. Each rule is also associated
with a priority value to distinguish the importance among
multiple matched rules. Packet classification is an enabling
function provided by routers for many network applications,
such as Quality of Service (QoS), security, monitoring,
analysis, and network intrusion detection (NIDS). In order to
keep pace with the increase of the link rates and the growing
size of classifiers, how to search the larger classifiers
efficiently is an important topic in recent years.

There are numerous solutions for packet classification.
Among them, decision tree based algorithms, like HyperCuts
[23] or HiCuts [9], are well-known approaches. The memory

needed in the decision tree based schemes is used to store the
internal nodes, leaf nodes, and the rules in the buckets
associated with the nodes. And the lookup speed depends on
the height of decision tree. HyperCuts builds the decision
tree by cutting multiple dimensions at a time to obtain
smaller tree height, but it suffers from large memory
overhead. In this paper, we propose a novel packet
classification scheme called Layer based Search Tree (LST).
LST improves the existing decision tree based schemes by
having two phases, partition phase and classification phase.
In the partition phase, rules are partitioned into several
buckets which are corresponding to the leaf nodes of binary
decision tree. In the classification phase, we consider the leaf
nodes of decision tree as sorted elements to construct an
approximately balanced binary search tree. LST can use the
binary decision tree which has the least number of rule
duplications without damaging the search speed because
speed of LST depends on the number of leaf nodes rather
than height of the decision tree.

Due to the high-speed link rate of router such as OC-768
(40Gbps), software solution is hard to achieve this
requirement. The 40Gbps means the router must processes
40 bytes packet every 8 ns. Thus, field-programmable gate
array (FPGA) has become a good choice for real-time
network processor. Although many existing FPGA-based
approaches can over 40Gbps for their throughput, the
hardware resource (block RAM) is still a bottleneck that
their approaches merely design for smaller or not complex
rule table (ACL). We can implement our proposed scheme,
layer based search tree, into FPGA with larger tables because
our proposed scheme need less memory requirement. In this
thesis, we also design a FPGA engine that has low hardware
cost and still keep pace with the high throughput.

II. RELATED WORK

We discussed the decision-tree-based approaches HiCuts
[9], HyperSplit [20], HyperCuts [23], and EffiCuts [27]
because they are related to our proposed scheme. In decision
tree based scheme, a pre-computed decision tree is built as
follows: Suppose a node v in the decision tree contain a set
of rules. All the rules in v are distributed into child nodes of v
and some rules may be duplicated in more than one node.
The rule distribution process is repeated at each child node

JaWes
高亮

JaWes
高亮

until the number of rules in each node is smaller than the
predefined threshold. In search step, by traversing the
decision tree we can find a set of candidate nodes. Then, the
buckets associated with the candidate nodes can be searched
linearly to find the highest priority rules. HyperCuts is an
improved version of HiCuts. Each node in HyperCuts selects
multiple fields to distribute the rules rather than one field at a
time. Thus the height of the decision tree in HyperCuts is
shorter than that of HiCuts. But its rule duplication may be
larger. HyperSplit and EffiCuts are both proposed to reduce
the memory size blowout problem. HyperSplit uses endpoint
position instead of bit position which represents the specific
endpoint to reduce rule duplication. EffiCuts classifies the
rules into some subsets according to the wild cards in each
filed and uses equi-dense cut to reduce the number of empty
nodes.

 There are many hardware based search engines for
packet classification. In this section, we will introduce some
search engines for Ternary Content Addressable Memory
(TCAM) or Field Programmable Gate Array (FPGA).
TCAM is a specific hardware in which each entry can store a
ternary string containing 0, 1 or * (wildcard). Besides, all
TCAM entries can be compared to the input headers in
parallel in one clock cycle. But TCAMs suffer from many
disadvantages that include high power consumption, range-
to-prefix expansion blowout, and high cost. Song et al.
proposed an architecture called BV-TCAM [24] that
combines the TCAM and the Bit Vector algorithm for
multiple matching results.

There are many approaches adopt bloom filter for search
engine. NTLMC [8] implement the cross-product algorithm
and bloom filter into the search engine. Besides, B2PC [19]
uses multi-level bloom filters in decomposing multi-field
classification to implement the search engine. 2sBFCE [18]
also use bloom filter and it is implemented in ASIC. The
above Bloom-Filter based schemes do not achieve the high
link rate of OC-768 (40Gbps).

The tree based search engines that use pipeline or parallel
architectures can improve their throughputs. Several existing
work [14][21][28][6][15] discusses how to implement
decision tree based algorithms on FPGA. Two-dimensional
Linear Dual-Pipeline [14], BiConOLP [28], and Power
Saved HyperCuts [15] implement HyperCuts. Two-
dimensional Linear Dual-Pipeline uses several linear
pipelines to process internal node buckets. BiConOLP
balance the dual port memory in each pipeline stage by
bidirectional subtree. Power Saved HyperCuts uses adaptive
clocking unit for power saving. HyperSplit on FPGA [21]
and Hyper-Cutting scheme [6] both implement endpoint base
decision tree algorithm. SPMT [3] and SPSTwB [7] belong
to the set-pruning tree based architecture. Rather than binary

set-pruning trie [12], SPMT and SPSTwB propose set-
pruning multi-bit trie and set-pruning segment tree to reduce
the number of memory access. Due to the large rule
duplication problem of set-pruning tree base algorithm, both
of the schemes partition the rule set into many groups to
reduce the memory requirement. All of above tree based
search engines with dual-port memory can achieve the high
link rate of OC-768. The main reason is that they all adopt
the parallel and pipeline architecture.

III. RULE TABLE ANALYSIS

In recent years, there are so many algorithms for packet
classification. Due to the different characteristics of three
type tables (ACL, FW, and IPC), none of the existing packet
classification schemes can be perfectly suitable for all types
of the tables. Thus, we will analyze the three filter sets which
are generated by ClassBench [25] in Table I to Table III. We
count the number of wildcards for each of the five fields
because the wildcards imply the heavy rule duplications that
may cause more memory usage in many existing algorithms.
Besides, we also calculate the number of distinct field values
for each field and use them to determine which filed is a
better choice to perform the cutting operation. Because a
field that contains a large number of distinct values
represents that it has more information to be used for the
classification process. The last column in the analysis tables
of these figures named Summary shows the ratios of number
of distinct field values and total number of rules or number
of wildcards and total number of rules. Table I shows the
results for ACL. We can see that wildcards account for
smaller than 1% of the Source or Destination IP field. The
source port fields in ACL are all wildcards. And the number
of distinct field value in source and destination field is larger
than other three fields. Thus, the source and destination IP
field is suitable than other three fields to solve the ACL table
because these two fields are outstanding in number of
distinct values and wildcards. The source port is not suitable
obviously.

Table
size

ACL FW IPC

Number
of

distinct

field
values

SA 4473(44%) 8733(87%) 1557(15%)

DA 595(6%) 3081(30%) 3105(30%)

SP 1 9 34

DP 108(0. 1%) 1 54

Prot 4 5 7

Number
of

wildcards

SA 35 978(10%) 367(4%)

DA 56 4959(50%) 225(2%)

SP 10000(100%) 3497(35%) 8322(83%)

DP 2792(28%) 10000(100%) 5455(55%)

Prot 802(8%) 2506(25%) 3311(33%)

Table I. Rule table analysis for 10K table

Compared with ACL table, FW table has more number of
wildcards. In ACL table, the ratios of wildcards in source
and destination IP fields do not reach 1%. Different from
ACL tables, the ratios of wildcards for FW table are about
10% in source IP field and 50% in destination IP field. The
ratios of distinct field values in source and destination IP
fields are about 80% and 30% and the ratios of the other
three fields are less than 1%. According to the number of
distinct field values, the source and destination IP field is
more important than the other three fields to solve the FW
table. But these two fields also have too large number of
wildcards. In order to solve the problem in these two fields,
we can partition the rule set according to wildcard of source
and destination IP fields. Each group of rule set can be easily
solved by decision tree method or other algorithms.

As the ACL tables, the ratios of wildcards in both source
and destination IP fields are smaller than other three fields.
Besides, the ratios of these two fields are larger than ACL
but smaller than FW. Furthermore, the pattern of IPC for
number of distinct field values is similar to that of ACL. As
in ACL and FW, the source and destination IP fields
obviously have more number of distinct field values than the
other fields. So, we also focus the source and destination IP
field in IPC. According to the above analysis, IPC rule table
is similar with ACL rule table that they both have less
number of wildcard and larger number of distinct field value
in source and destination field. But, memory usage of
decision tree scheme for IPC is worse than ACL even if we
divide the rule table into some subgroups by the wildcards
for source and destination field. The result let us know that it
surely has other factors which influence the memory usage in
source and destination IP field. In fact, the prefix length of
source and destination field is the key factor for why IPC
still need more memory than ACL.

Because the rule set has much more number of distinct
values in source and destination IP fields than other three
fields, we would usually select the source and destination IP
fields to partition. And the length distribution for source and
destination IP field is shown in Table II. The value in
parentheses is the ratio of number of rules which has that
prefix length in that field and total number of rules. The 10K

rule tables of Table IV are public available in [13]. In ACL-
10K, we find out that the proportion of prefix length "32" in
source and destination IP field is 85.6% and 82.9%,
respectively. But, they are 38% and 46.2% in IPC-10K. No
matter the rules is in source IP or destination IP field, the
length of prefix in ACL is larger than 80%. But, they are
smaller than 50% in IPC. This characteristic can be verified
why IPC has more memory usage than ACL. Decision
scheme for ACL rule table has less memory usage because
most rules in source and destination IP field would not cause
any duplication. Although the proportion of length "32" in
source and destination IP field is 26.6% and 68.2% in FW-
10K, the ratio of wildcard are 60.9% and 25.4%. For source
and destination IP field, total rules in wildcards and length
"32" are 87.5% and 93.6%. This analysis shows that the rules
in FW are almost wildcard or length "32" prefix. This is why
grouping the rule set by wildcard field can easily reduce the
memory usage in FW.

IV. PROPOSED SCHEME

Many exist works [2][5][12][19] shown that simple
groups method can reduce rule duplication efficiently.
EffiCuts [19] solved the memory overhead problem by
dividing rules into some groups according to the wildcard (or
almost wild card) fields. Our scheme also categorized the
rules into subgroups. Because the classification capability of
prefix fields is more effective than range and protocol fields,
the criterion of our grouping method is only based prefix

fields. There are four groups in the proposed scheme：

group 1: rules with wildcards in both source and
destination address fields.

group 2: rules with wildcard only in source address field.
group 3: rules with wildcard only in destination address

field.
group 4: rules without wildcards in both source and

destination address fields.
We select either group 2 or group 3 that has more rules

than the other to merge with group 1. As a result, we have
three groups left. Then we construct a search tree for each of
the three groups independently. The search tree construction
has two phases, namely partition phase and classification
phase. In the partition phase, we construct the binary
decision tree to partition the rules in the group into several
buckets which exist in the leaf nodes of the binary decision
tree. The bucket size is limited by a predefined threshold T.
In the classification phase, all the leaf nodes in binary
decision tree are used to build the approximately balanced
search tree. Rather than searching from the root to a leaf
node, searches on this tree can stop when an internal node
may contain matched rules. Finally, we linearly search the
bucket which is pointed by the matched node to find the best
matching rule. To illustrate our proposed scheme, an
example of two-dimensional (2-D) classifier is shown in
Figure1. Each rule Ri = (Ri[1], Ri[2]) is a rectangular area in
the 2-D address space.

A. Partition phase

In this phase, a binary decision tree is used to divide the
rules into several buckets. The binary decision tree is built by

Table II. The length distribution of source and destination IP field

 Length ACL-10K FW-10K IPC-10K

SA

0 7 5672(60.9%) 556(6.2%)

1-8 14 28 0

9-16 0 71 457(5.1%)

17-20 0 0 133(1.5%)

21-24 781(8.1%) 255(2.7%) 3547(39.1%)

24-28 0 484(5.2%) 814(9%)

28-31 584(6%) 372(4%) 95(1.1%)

32 8217(85.6%) 2429(26%) 3435(38%)

DA

0 26 2361(25.4%) 461(5.1%)

1-8 109(1.1%) 0 0

9-16 164(1.7%) 0 681(7.5%)

17-20 0 0 9

21-24 1073(11.2%) 236(2.5%) 2543(28.1%)

24-28 51 243(2.6%) 1102(12.2%)

28-31 223(2.3%) 122(1.3%) 66

32 7957(82.9%) 6349(68.2%) 4175(46.2%)

cutting each node independently. Each node v in the binary
decision tree is associated with the following attributes:
1. sp(P1[v],…, Pd[v]): the address space covered by node v,

where d is the number of fields of the rules. The root
node covers the entire d-dimensional address space.

2. rule(v): the set of rules that intersect sp(P1[v], …, Pd[v]).
3. field(v): the selected field to cut the address space of v.
4. right(v)/left(v): the right and left child pointers of v.
5. LF(v): the layer to which node v belongs.
6. L(v): the set of labels from the first layer to LF(v).

Basically, the proposed decision tree is constructed based
on Hicuts [6]. For each node v to be partitioned in the
decision tree, we select the field denoted by field(v) such that
the resulting number of rule duplications is the least
compared to cutting the node along any other fields. Fig. 2
shows an example in 3-bit address space for a node v
containing two rules, R1 = ([000, 001], [110, 111]), R2 =
([000, 110], [000, 011]). If node v is partitioned along field 1
at the first bit, the left child node u of v will contain two sub-
rules R1 = ([000, 001], [110, 111]), R2 = ([000, 011], [000,
110]) and the right child node of v will contain only one sub-
rule R2 = ([100, 110], [000, 011]). However, if v is
partitioned along field 2, both the left and right child nodes u
and z of v will contain only one rule which are R2 = ([000,
011], [000, 011]) and R1 = ([000, 001], [110, 111]),
respectively. As a result, partitioning node v along field 2 is
preferred. The node cutting process continues until it
contains no larger than T rules, where T is a predefined

threshold.
We define a parameter, called layer such that all the

nodes in the same layer are partitioned along the same field,
called layer field (LF). The root of the decision tree is
initially defined to be in layer 0. As in the example of Fig. 2,
nodes u and z are partitioned along the same field and thus
they belong to the same layer. If the partition field of node u
is also field 2, both of node u’s child nodes are also collected
in the same layer of u. In Figure 3, the layer numbers are
shown with different colors based on the layering process
described above. As we can see, nodes b, c, and f are
classified in layer 1 because they are obtained by cutting
their parent nodes along field 1. Similarly, nodes g, d, h, e, k,
o, l, and p belong to layer 2 because they are obtained by
cutting their parent nodes along field 2. Next, we will
describe how to compute the label set L(v) for node v which
is the key factor in classification phase. Initially, the label set
of root node is set to empty, Ø . If a node and its two child
nodes are in the same layer, its label set inherits from its
parent node. Nodes c, d, and l in Fig. 3 are the examples for
this case. If a node v is not in the same layer as its child
nodes, its label set will be set to its parent’s label set
appended to by field value of covered space in field field(v).
For example, the label set of node f, L(f), is L(c) + P1[f] =
11* because L(c) = L(a) = Ø and P1[f] = 11*. Finally, if there
are n layers in the decision tree and the label set of a leaf
node v is of size k, then n – k *’s need to be appended. For
example, L(c) is {11*, 11*, *} where the last don’t-care is
finally added.

Label set is the construction basis of classification phase.
Besides, the rules in each bucket are arranged from high

Figure 1. An example 2-D classifier with eight rules in 2525

address space

Rule Ri Ri[1] Ri[2]

R1 [24, 31] [24, 31]

R2 [0, 7] [16, 23]

R3 [0, 7] [0, 7]

R4 [12, 15] [0, 7]

R5 [0, 15] [12, 15]

R6 [24, 27] [16, 19]

R7 [12, 15] [16, 31]

R8 [24, 31] [4, 7]

5-bit Field 2

R3

R1

R4

R6

R7

R8

0

16

8

24

R2

R

5

0 16 24 8 5-bit Field 1

z

(Rv[1], Rv[2]) = (*, *)
rule(v) = {R1=([000, 001],[110, 111]), R2=([000, 110],[000, 011])}

(Ru[1], Ru[2])= (*, 0*)
rule(u) =
{R2 = ([000, 110],[000, 011])}

(Rz[1], Rz[2]) = (*, 1*)
rule(z) =
{ R1 = [000, 001], [110, 111]}

Figure 2. Node v is divided along field 2 into two child nods, u and z.

Field(v) = 2

u

v

1

2

2

2

1

1

1

1 2 2

1 1

sp(0*, *)
L(b) : 0*

sp(11*, *)
L(f) : 11*

sp(0*, 0*)
L(d) : 0*

sp(00*, 1*)
L(i) : 0*, 1*, 00*

R2

sp(0*,1*)
L(e) : 0*, 1*

sp(01*, 1*)
L(j) : 0*, 1*, 01*

R7

sp(0*, 00*)
L(g) : 0*, 00*

sp(0*, 01*)
L(h) : 0*, 01*, *

R5

b

a

sp(11*, 0*)
L(k) : 11*, 0*, *

R8

sp(11*, 1*)
L(l) : 11*

sp(00*, 00*)
L(m) : 0*, 00*, 00*

R3

sp(01*, 00*)
L(n) : 0*, 00*, 01*

R4

sp(11*, 10*)
L(o) : 11*, 10*, *

R6

Figure 3. A binary decision tree built according to rules in Table I, where the predefined threshold T = 1.

Layer 1

Layer 2

Layer 3

sp(1*, *)
L(c) : Ø

sp (11*, 11*)
L(p) : 11*, 11*, *

R1

Layer 0(Root)

c

f d e

g

h

l

m n

sp(*, *)
L(a) : Ø

2 2

2

i

j

k

o p

priority rule to low priority rule. Once the some rule is
matched, it guarantees that the rule is the highest priority
matching rule in that bucket.

B. Classification Phase

After the partition phase, the leaf nodes of binary
decision tree are taken to construct the search tree which is
built as balanced as possible. First, the buckets of leaf nodes
are arranged in an array. Each bucket has a multi-field label
set which is associated with the corresponding leaf node. The
bucket array is ordered by projected position of leaf nodes in
the binary decision tree on the horizontal line. Each bucket
contains a set of rules, a label set containing k labels, and the
address space covered by this bucket. Let L(i)[k] denote the
kth label of the ith bucket. L(0)[j] to L(n-1)[j] is called label
array j, where n is number of buckets and j ≤ k. Figure 4 (a)
shows the result of bucket array from Figure 3. The original
motivation is that we consider the label set, L(i)[0] to L(i)[k],
as a wide identifier to be searched, where k is number of
layers in binary decision tree and i is the index of buckets.
Bucket array then can be binary searched by label set array.
However, the comparison between each label set is too
complex in the worst case because the number of labels for
each bucket is about 2 to 9. Therefore, we propose the layer
partitioned search tree (LPST) to solve such problem. Instead
of comparing all labels in a label set, LPST only compares a
single label field and sometimes it needs to check whether
the node is matched. Each node of LPST is corresponding to
a bucket, so the number of nodes is the same as the number
of buckets. Besides, each node has three pointers to point to
the subtrees that contains labels smaller than, equal to, and
larger than the label of the node. Assume L, R, and M are the
leftmost, rightmost, and middle indices of bucket array. For
the creation of each node, the label array must be checked
first. Then one of buckets in bucket array is picked to
construct the LPST according to this label array. From j = 1
to k, the following operations are performed. We select the

smallest j such that that L(R)[j] to L(L)[j] are not all identical.
Next, we find two indexes El and Er such that L(i)[j] =
L(M)[j] for i = El to Er and L ≤ El ≤ M ≤ Er ≤ R. Thus,
buckets bucket[R] to bucket[L] are divided into four parts: (1)
smaller buckets bucket[L...El–1], (2) the selected bucket[Em],
any one from buckets bucket[E1…Er], identity buckets
bucket[E1…Em–1,Em+1…Er], and larger buckets
bucket[Er+1…R]. Notice that the spaces covered by buckets
bucket[E1…Er] are disjoint and so if we can find a match in
any one, this match must be the only match in buckets
bucket[E1…Er]. Then, a node is created to record
bucket[Em], label field L(Em)[j], and the subspace covered
by bucket Em. This node creation process is repeated
recursively so that the left pointer pointing to the subtree
created from bucket[L...El–1], middle pointer pointing to the
subtree created from bucket[E1…Em–1,Em+1…Er], and
right pointer pointing to the subtree created from
bucket[Er+1…R]. Figure 5 shows the LPST construction
algorithm.

Figure 4 (b) shows the LPST built according to the

buckets array in Figure 4 (a). The index of middle bucket is 4

and this bucket will be the selected bucket (root). Then, the

first label of bucket 4 (0*) is used to look for the smaller

array, identical array, and larger array. Since the bucket

whose first label is smaller than selected bucket's does not

exist, the left pointer of root is NULL. Identical buckets

(bucket[0…3]) which contains the identical label 0* and the

remaining buckets are larger buckets (bucket[5…7]). Then

middle subtree is created by middle buckets bucket[0…3]

and right subtree is created by larger buckets bucket[5…7].

The middle child of root is node 2 because it is middle

bucket in bucket[0…3]. And the subtree of node 2 is

constructed by bucket[0,1,3]. Then, right child node of root

node is node 6 and the subtree of node 6 is constructed by

bucket[5,7]. Similar operations are performed to recursively

construct the whole search tree.
For each incoming packet, the packet headers are used to

traverse the search tree. For each search step, the
corresponding field is compared with the label. If the
corresponding field is matched, the subspace of this node is
checked to see whether the node is matched or traversal goes
ahead to the middle direction. Otherwise, if the

Label(i)[1]:

Label(i)[2]:

Label(i)[3]:

Figure 4. (a) Bucket array corresponding to the leaf nodes in Figure 3

(b) A binary search tree built according to (a)

0*

00*
00*

0*

00*
01*

0*

01*
*

0*

1*
00*

Index of buckets:

0*

1*
01*

11*

0*
*

11*

10*
*

11*

11*
*

LF

1

2

1

Rules:

subspaces covered

by buckets:

(00*,

00*)

(01*,

00*)

(0*,

01*)

(00*,

1*)

(01*,

1*)

(11*,

0*)

(11*,

10*)

(11*,

11*)

0 1 2 3 4 5 6 7 i

R3 R4 R5 R2 R7 R8 R6 R1

4
(01*, 1*)

Field 1, 0* R7

6 R6
2 R5

1 R4

R3

R8 R1

(0*, 01*)

field 2, 01*

(11*, 10*)
field 2, 10*

(01*, 00*)

field 1, 01*

R5

(a)

(b)

// Construction of LST

LPST_create(Node, L, R) {

01 j = LabelArrayFind(L, R); //Inspect label arrays and return the

smallest number j such that L(R)[j] to L(L)[j] are not all identical;

02 M = (L+R+1)/2;

03 Find two indexes El and Er such that L(El)[j] to L(Er)[j] are all

identical. (L ≤ El ≤ M ≤ Er ≤ R).

04 Node.index = Em such that bucket[Em] has the highest priority

among all buckets bucket[El..Er];

05 Node.label = bucket[El].label(j);

06 Node.region = bucket[El]. bucket_region;

07 if (El > L) LPST_create (N->left, L, El – 1);

08 if (Er > El) LPST_create (N->middle, El, Er);

09 if (R > Er) LPST_create (N->rightt, Er+1, R);

}

Figure 5. Algorithm to construct LST.

corresponding field is larger or smaller than the label of the
node being checked, the direction of traversal would be right
or left, respectively. If the node is matched, the rules
associated with this node are linearly searched until a
matched rule is found. For example, the packet header
(00010, 10010) is used to search in Figure 4 (b) In root, the
field 1 header matches the label (0*), but it doesn't match the
sp(01*, 10*). So the node 2 is searched next because the
label of 0* matches 00010. The field 2 header 10010 doesn't
match the label (01*). Since 10010 is larger than its label 01*,
node 3 is the next node to search. The label and subspace of
node 3 both match the packet headers. As a result, the bucket
of node 3 is linearly searched and R2 is the final result.

As mentioned earlier, LPST has three groups which are
classified by wild card. Searching three trees sequentially
decreases the overall search performance. We can increase
the overall search performance by maintaining the highest-
priorities in the second and third groups. Thus, most of the
searches can be completed without searching the next group
if the priority of matched rule in the prior group is higher
than the next group. Besides, the decreasing order of rules in
each bucket can also save some search times if the matching
rule has higher priority than other rules in the bucket.

C. Hardware Architecture

By our grouping method, we construct the three
separable search trees. Each search tree would be mapped to
a search engine. Then, we parallel the search engine and use
pipeline technique to increase the throughput. Due to our
linear pipeline structure, it has many advantages:

1. Each packet can be delay in a constant time.
2. The order of packet can be maintained.
3. One clock cycle can resolve a packet.
Figure 6 shows the system block diagram of basic

architecture with dual port Block RAMs. Two packets can be

input at the same time because dual port Block RAM allows
two packets read the data from the same Block RAM module
simultaneously. Each packet would traverse all the three
search engines in parallel. The packets input to the three
search engine simultaneously and they also departure from
the search engines at the same time. After the packet
departure, each three search engines would output a rule ID.
If some search engine doesn't have match rule, it will output
the default ID. The priority resolver would select the highest
priority rule to output.

The Figure 7 shows the architecture for each search
engines. If the height of search tree is N and bucket size is M,
the corresponding search engine will be N node stages and
M bucket stages. For the search engine, the packet needs to
go through N node stages. The pipeline bucket address must
be transmitted along linear pipeline stages from first stage to
stage N. Any stages have the chance to modify the pipeline
bucket address for transmission. If the matching rule store in
this search engine, one of the node stage would modify the
correct pipeline bucket address. The following stages would
not allow modifying the transmission bucket address because
the packet would match only one node. If the matching rule
do not store in the search engine, the wrong pipeline bucket
address also need to be transmitted to node stage N. Then,
packet goes through M bucket stages according to the
pipeline bucket address and it will output the default rule ID.
In each bucket stage, the packet compares a rule which is at
the pipeline bucket address and output the match rule.

In the node stages, we need to map the search tree node
into pipeline memories and design the delicate hardware
circuit for dimension selection and label comparator.

We show our data format before we explain how to
design the node pipeline stages. The node data format is
shown in Figure 8. We will mention the node data format in
the following description:

(1) Rule space covered by node: Because the nodes of

Figure 6. System block diagram for parallel search engines

output

Packet #1

…

Pipeline for search engine 1

Pipeline for search engine 2

Pipeline for search engine 3

P
rio

rity

R
eso

lv
er

Packet #2

…

…
Figure 7. The architecture for each search engine.

N node stages M bucket stages Packet

Node

stage

2

 Node

stage

1

Node

stage

N

Bucket

stage

M

RuleID

… …

Bucket

stage

1

Figure 8. Node data format

X: ⌈log2 (number of buckets)⌉

Z: ⌈log2 (total number of dimension which is selected by search tree)⌉

⌈log2 (number of nodes in indicating stage)⌉

Y: ⌈log2 (number of buckets)⌉

If the stage has leaf node

Else
Prefix of SP

Prefix of DA

Prefix of SP

38 Prefix of SA

Prefix of

Prot

Rule space covered
by node

Pipeline Bucket

Address

X

Left

Y

Z

6

Middle

Y

Right

Y

Dimension

identifier

Label prefix

length

38

21

21

12

+

JaWes
高亮

LST in partition phase are cut by bit, the rule space covered
by node is consisted by prefix set. The prefix set are prefix of
SA, prefix of DA, prefix of SP, prefix of DP, and prefix of
Protocol. For each separable tree, some dimension may
never be selected that the corresponding prefix of each node
would be wildcard. For example, the third tree of LST that
all rules have wildcards in both source and destination
address field would never select the source and destination
address field to cutting. Thus, if the nodes of search tree all
contain the wildcard prefixes with same dimension, we can
consider the wildcard prefixes as the default prefixes and do
not need to record them. The SA and DA of prefix both
contain 32 bit value and 6 bit mask. The SP and DP of prefix
both contain 16 bit value and 5 bit mask. The Protocol of
prefix is 8 bit value and 4 bit mask.

(2) Pipeline bucket address: Due to all the nodes of
search tree are leaf nodes of binary decision tree, each node
of search tree records a bucket address. Each pipeline stage
will inspect whether the node is matching or not, the pipeline
bucket address which is contained by matched node will
transmit to first bucket stage by stage. The address bits are
corresponding to the number of buckets. The size is

)buckets ofnumber (log2
 .

(3) Left, Middle, and Right: They are the pointer
addresses of left, middle, and right child node. Due to these
three pointers in leaf node maybe be used to point to the
bucket. Thus, the Right, Middle, and Left address bits are
corresponding to the number of nodes in indicating stage or
number of buckets. If the pipeline stage contains leaf node,
the size of Left, Middle, and Right in this pipeline stage is

)buckets ofnumber (log2
. Otherwise, the size is

)stage indicatingin nodes ofnumber (log2
.

(4) Dimension identifier: It is a single value to indicate
the selected dimension. If the search tree only select SA, DA,
and DP to construct, the value 0~2 for dimension identifier
represents SA, DP, and DP, respectively.

(5) Label prefix length: The format of label prefix is
"value/length". The label prefix length is the mask of label
prefix. Because the value of label prefix can be obtained
from "rule space covered by node", we only store the prefix

mask. The size is 6 bits because the largest prefix value is 32
bits that the length can be 0 to 32.

Figure 9 shows the block diagram of single node stage. In
order to speed up the clock rate, the operation of node is
partitioned into two pipeline stages. Although using two
stages to deal with one search tree level, we still can accept
the total stages because height of search tree is not too large.
Each node operation has three steps:

1. Access node memory: Read memory by the input
address (addr_in) and output mem_out which is the
corresponding node data structure. The format of mem_out is
shown in Figure 8. Besides, info_out is part of mem_out that
they are Pipline bucket address, Left, Middle, and Right.
The characteristic of info_out is that it doesn't need to be
compared in matching unit.

2. Matching unit: Each field of packet header is taken to
match the corresponding prefix in "Rule space covered by
node". signal is the bit-vector that each bit records whether
the corresponding field prefix is matched or not. If some
prefix matches the corresponding field of packet header, the
corresponding bit would be 1. Otherwise, the bit of bit-vector
is 0. Matching unit also output label and pa. label is
generated by extracting the value in "Rule space covered by
node" according to the Dimension identifier and right
shifting this value according to the Label prefix length. pa is
generated by fetching one field value from the packet header
according to the dimension identifier and also right shifting
this value according to the Label prefix length.

3. Address Detection Unit: Address detection unit has
two parts. One part determines the child address (addr_out)
for the next node stage by comparing the label with pa.
Another one part determines the pipeline bucket address
(bucket_addr) to output. If is_match shows the node is match,
the output bucket_addr would be the same as input
bucket_addr. Otherwise, we we must identify output
bucket_addr that bucket_addr is Pipeline bucket address
which is fetched from info_in or addr_out. According to the
singnal_in, we identify the bit vector whether the node is
matched or not. If the node is matched, addr_out must be
pipeline bucket address which transmits form info_in. And
match_out must output 1. Otherwise, addr_out would be
addr_out and match_out output 0.

 We take two adjustments to improve the bucket stage.
One adjustment is bucket merging. Even if we use binth to
restrict the maximum number of rules in each bucket, each
bucket still has different number of rules. Because the
packets need to traverse from the first stage to the last stage,
each stage needs to consume one clock cycle even if no rule
needs to be compared in that stage. Thus, we can merge
some buckets so that total rules still do not exceed the size of
bucket. First, the bucket must sort according to the number
of rules. The condition of bucket merging is that number of
rules for each bucket can't exceed the bucket size after the
bucket merging. The buckets which contain the rule
duplication need to be merged first. We can remove the
duplication rules from the merging bucket. Then, we merge
the remaining buckets. We inspect the bucket from first to
last to merge with the following buckets. After the bucket
merging, we need to sort priority of all the rules for each

Figure 9: The architecture of node stage

packet header

bucket_addr

addr_in

Matching

unit
mem_out

Address

Detection

Unit

packet header

Node

Memory

bucket_addr

addr_out

signal

label

pa

is_match is_match

info_in

is_match

bucket_addr

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

bucket in decreasing order of the priority. For this design, we
do not need to compare the priority in each bucket stage
because we can guarantee that the last matched rule has the
highest priority.

Another one is bucket size increasing with no responds
time increasing. For each search tree, the number of total
stages is not the same. The search engine which contains the
less number of stages needs to wait for the one containing
more stages. A block RAM size is restricted by 1024 entries.
If some stages for the smaller search engine contains more
than 1024 entries, we maybe can increase the bucket size to
decrease the number of block RAM usage and the total
stages with bucket size increasing is no larger than the
largest one.

Figure 10 shows pipeline stage with simple mapping for
six uneven buckets. The method of simple mapping is that
we sort the bucket by the size of buckets and then directly
map the buckets in the pipeline stage in order. For this
example, we need three bit bucket address to record the six
buckets. Figure 11 shows the bucket pipeline mapping with
adjusting the buckets in Figure 10. We assume that bucket
size is five after the bucket increasing. We first find the
buckets which contain the duplication rule to merge that
bucket 1 and bucket 5 both have R4. Besides, the number of
rules would be five after the bucket merging. So we merge
the bucket 1 and 5. Then, we inspect remaining bucket to
merge that bucket 2 and 3 can be merged with bucket 4 and 6.
After the bucket merging, the bucket address only needs 2
bits instead of 4 bits.

V. EXPERIMENTAL RESULTS

In this section, we will show our hardware performance
and compare with other hardware based packet classification
schemes. Our scheme is implemented in FPGA by verilog

with Xilinx ISE 12.2 development tools. The target device is
Xilinx Virtex-5 XC5VFX200T [28] with ‘-2’ speed grade.

The bucket size of each search tree in different rule tables
would be variable. We will discuss the influence of Block
Ram usage in different bucket sizes. Table II shows the
usage of Block Ran with variable bucket size in FW1 10K
table. The second row is the number of rules with variable
bucket size. We can see that the large bucket size have the
less rule duplication and our proposed scheme cause less rule
duplication. Even if the bucket size for each search engine is
set to 4, the number of rules in our proposed only causes
more 10% than number of rules in original rule table. For
each search engine, the different bucket size leads to
different number of Block Ram. If we decrease the bucket
size, pipeline stages for bucket search would be less. But the
number of node pipeline stages maybe becomes larger.
Besides, a Block Ram has 18 bits bandwidth and 1K entries.
Bucket size decreasing may cause more entries for each
pipeline stages. In other word, it is possible to increase the
number of Block Ram in each stage. For Table 6-7, bucket
size 5, 7, and 7 for each search engine have the least number
of Block Rams. So we choose this three bucket size to
implement FW1 10K tables.

Table IV shows the performance of rule duplication and
bucket merging for 10K rule tables. The duplication ratio of
of rules in original rule table and # of rules in LST is
1.06~1.68. For FW_10K, the merging ratio of (# of buckets
before merging - # of buckets after merging) and # of
buckets before merging is lower because buckets before
merging are almost full.

Figure 10. The Rule lists.

R15

R1

R2

R3

R4

R6 R10

R12

R13

R5

R9

R4

R11

R14

R7

R8

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 Bucket 6

Stage 1

Stage 2

Stage 3

Stage 4

Figure 11. Mapping with adjustment.

R1

R2

R3

R4

R5

R14

R6

R8

R7

R15

R12

R10

Stage 1

Stage 2

Stage 3

Stage 4

Bucket 2 & 4

R9

R11

R13 Stage 5

Bucket 1 & 5 Bucket 3 &6

Table II. Number of Block Ram with different bucket size and number of rules in FW1 10K rule table

Bucket size 4 5 6 7 8 9 10 11 12

Number of Rules (original: 9311 rules) 10307 1005 9901 9861 9807 9769 9719 9669 9615

Search engine 1 Number of 18K Block Ram 117 90 108 108 117 117 126 135 135

Search engine 2 Number of 18K Block Ram 112 112 104 96 104 120 128 136 144

Search engine 3 Number of 18K Block Ram 78 78 78 72 78 78 78 84 90

JaWes
高亮

JaWes
高亮

JaWes
高亮

JaWes
高亮

In table V, we show the memory usage of our proposed
scheme for ACL1 10K, IPC1 10K and Fw1 10K table.
Taking FW_10K for example, we can see that our proposed
scheme needs 164.64 KB. According to the Table 6-7, the
estimated number of Block Ram is 258 and the Block Ram
we used is 580.5 KB (258*18Kbit). That is to say the 71.6%
memory is empty. Thus, we use distributed Ram which
doesn't restrict the size of bandwidth and number of entries
instead of Block Ram for some less entries stages to increase
the efficiency of memory usage. Table VI shows the FPGA
resources utilization and throughput for 10K rule tables. All
the schemes use the Xilinx Virtex-5 XC5VFX200T with -2
speed grade and Dual-Port memories. For 40 byte per packet,

our throughput is about 60Gbps which can achieve OC-768
40Gbps. Our proposed scheme use about 3% Slices
utilization and 20% Block Ram. A Block Ram unit showed
in Table VI is 36 Kbit which contains the two smallest units.
To compare with other two schemes, our scheme requires the
least FPGA resources expect for FW 10K. Although the
throughput of our scheme is a little smaller than SPSTwB [7],
our scheme can implement the larger rule table than other
two schemes. Hyper-Cutting [6] at most implement in ACL
50K, FW 25K, and IPC 20K. SPSTwB is ACL 30K, FW
15K, and IPC 20K. Our scheme can fit 50K for all the three
tables, shown as Table VII.

In Table VII, we adopt original the four groups, classified
in section 4.2, for the FW and IPC 50K because merging
group 2 or 3 to group 1 would cause large rule duplication.
The more search engine waste more Block Ram that IPC
50K uses more Block Ram than ACL 50K even if IPC 50K
require less memory usage.

In Table VIII, we also compare our design with some
existing schemes which use the Xilinx Virtex-5
XC5VFX200T device and dual port memory [3][14]
[28][6][7]. Because some of them can’t fit in IPC1_10K and
FW1_10K, we only show the result for ACL1_10K rule
table. The slices are quite sufficient for each approach. And
the bottleneck of the rule table size is Block Ram utilization.
Thus, we introduce a new metric, Efficiency, as the ratio of
throughput and the number of used Block RAMs to have a
fair comparison. For the efficiency, our approach is the best.

The Table IX shows the throughput comparison of many
existing engines for packet classification. The second column
lists the platform of each approach. Due to the rule table of
each approach is not the same, we show number of rules
used for each approach in third column. And the last column
lists the throughput. Although throughput of our approach is

Table IV. The performance of rule duplication and

bucket merging for 10K rule tables

 ACL1_10K FW1_10K IPC1_10K

of rules in

table
9603 9311 9037

of rules in LST 11098 9867 15141

Duplication

ratio
1.16 1.06 1.68

Bucket Size for

each search tree
12, 7, 2 5, 7, 7 13, 10, 3

of buckets

before merging
2768 2099 3245

of buckets

after merging
964 1939 1251

Merging ratio 0.65 0.08 0.61

Table V The detailed performance statistics of the proposed scheme

for 10K rule table

 ACL1_10K IPC1_10K FW1_10K

Engine

0

Bucket Size 12 13 5

Tree height 12 13 10

Tree
Memory(KB)

37.64 38.13 12.8

Bucket

Memory(KB)
181.17 212.69 63.1

Total
Memory(KB)

218.81 250.82 75.9

Engine

1

Bucket Size 7 10 7

Tree height 8 12 9

Tree

Memory(KB)
1.29 7.23 11.89

Bucket

Memory(KB)
6.63 36.55 69.73

Total

Memory(KB)
7.92 43.78 81.62

Engine
2

Bucket Size 2 3 7

Tree height 2 4 9

Tree

Memory(KB)
0.017 0.19 1.84

Bucket

Memory(KB)
0.026 0.33 5.28

Total
Memory(KB)

0.043 0.52 7.12

Total Memory
usage(KB)

226.78 295.13 164.64

Table VI. The FPGA resources utilization and throughput for

10K rule tables

Scheme
Rule

Table

Slices

Used/

Available

Block

RAMs

Used/

Available

Frequency

(MHz)

Throughput

(Gbps)

Our

proposed

scheme

ACL1

10K

898/30720

(3.2%)

95/456

(20.8%)
194.64 62.28

IPC1

10K

924/30720

(3.0%)

121/456

(26.5%)
192.02 61.45

FW1

10K

827/30720

(2.7%)

103/456

(22.6%)
196.95 63.05

Hyper-

Cutting

scheme [6]

ACL1

10K

3290/30720
(10.7%)

171/456
(37.5%)

161.76 50.55

IPC1

10K

6041/30720
(19.6%)

318/456
(69.7%)

161.63 50.51

FW1

10K

3613/30720

(11.7%)

269/456

(58.9%)
161.20 50.38

SPSTwB

[7]

ACL1

10K

1576/30720

(5.2%)

182/456

(39.9%)
207.98 64.99

IPC1

10K

1250/30720

(4.1%)

243/456

(53.3%)
208.46 65.14

FW1

10K

623/30720
(2.1%)

114/456
(25%)

212.6 66.44

smaller than SPSTwB, the efficiency of our approach is
larger than SPSTwB, shown as Table 6-12.

VI. CONCLUSION

In this paper, we propose a scheme, named layer based
search tree (LST), to solve multi-field packet classification
problem. There are two phase, partition phase and
classification phase. In partition phase, we map the given
classifier into the binary decision tree by layering process. In
classification phase, we collect all the leaf nodes of binary
decision tree to construct the binary search tree. For each
incoming packet, search in LST is immediately finished
without searching the entire search tree if the packet matches

the space covered by the node. To further improve the
average classification speed in multiple groups, we use
highest-priority variable to skip the search in some groups.
Although software solution for packet classification problem
is more flexible, the throughput is hard to keep pace with the
rapid growth of Internet traffics that routers needs to achieve
the high link rate such as OC-768 (40Gbps). Thus, we design
the hardware search engine with pipeline and parallel
architecture for the LST. Based on Xilinx Virtex-5 FPGA
device, our search engine can support 50k rule table for ACL,
FW, and IPC. Besides, we can achieve over 120 Gbps
throughput with dual port memory.

REFERENCES

[1] H. J. Chao, “Next generation routers,” Proceedings of

the IEEE, vol. 90, no. 9, pp. 1518-1558, Sep. 2002.

[2] Y. K. Chang, “Efficient Multidimensional Packet

Classification with Fast Updates,” IEEE Transactions

on Computers, vol. 58, no. 4, pp. 463-479, Apr. 2009.

[3] Y. K. Chang, Y.-S. Lin, and C.-C. Su, "A High-Speed

and Memory Efficient Pipeline Architecture for

Packet Classification," IEEE Symposium on Field-

Programmable Custom Computing Machines, pp.215

- 218, 2010.

[4] Y. K, Chang and H.-C. Chen, "Layered Cutting

Scheme for Packet Classification," The IEEE 25th

International Conference on Advanced Information

Networking and Applications (AINA-2011), 2011.

Approach

es

Slices

Used/

Available

Block

RAMs

Used/

Availab

le

Frequ

ency

(MHz

)

Throu

ghput

(Gbps)

Efficie

ncy

(Throu

ghput/

Block

Rams)

Our

approach

1796/30720

(6.4%)

95/456

(20.8%)
194.64 124.57 1.311

SPSTwB[7

]

3152/30720
(10.3%)

182/456
(39.9%)

207.98 129.99 0.714

Hyper-

Cutting

scheme[6]

7044/30720

(22.9%)

173/456

(37.9%)
161.76 101.1 0.584

Two-

dimension

al Linear

Dual-

Pipeline[1

4]

10307/3072

0 (33.5%)

407/456

(89.2%)
125.4 78.37 0.192

BiConOL

P[28]

6611/30720

(21.5%)

208/456

(45.6%)
143.4 44.81 0.215

SPMT[3]
6584/30720

(21.4%)

429/456

(94.1%)
173.02 108.14 0.252

Table VIII. The comparison in Virtex-5 environment with

ACL_10K rule table.

 Table IX. The throughput comparison of many existing engines for
packet classification.

Approaches Platform
of

rules

Throughput

(Gbps)

SPSTwB[7]
Virtex-5

XC5VFX200T
9,603 129.99

Our approach
Virtex-5

XC5VFX200T
9,603 124.57

SPMT[3]
Virtex-5

XC5VFX200T
9,603 108.14

Hyper-Cutting

scheme[6]

Virtex-5

XC5VFX200T
9,603 101.1

Two-

dimensional

Linear Dual-

Pipeline[14]

Virtex-5

XC5VFX200T
9,603 78.37

HyperSplit on

FPGA[21]

Virtex-6

XC6VSX475T
9603 72.12

BiConOLP[28]
Virtex-5

XC5VFX200T
9603 44.81

B2PC in

ASIC[19]
ASIC 3300 13.6

NTLMC[8] Evaluate 12507 12.16

Power Saved

HyperCuts[15]

Cyclone

EP3C120F484C8 &
Stratix

EP3SE260F1152C47

25,000 10

BV-TCAM[24] Virtex-E XCV2000E 222 10

2sBFCE[18]
Virtex-4

4vfx40ff672
4,000 1.88

Table VII. The detailed performance for three rule 50K tables

 ACL1

50K

FW1

50K

IPC1

50K

Engine

1

Tree Memory (KB) 100.89 65.76 48.27

Bucket memory (KB) 1006.23 777.11 590.16

Engine

2

Tree Memory (KB) 1.93 23.19 42.97

Bucket memory (KB) 12.92 173.07 224.2

Engine

3

Tree Memory (KB) 0.13 82.43 13.76

Bucket memory (KB) 0.79 630.66 73.24

Engine

4

Tree Memory (KB) - 3 0.41

Bucket memory (KB) - 9.2 1.23

Total Memory usage(KB) 1122.88 1761.36 994.22

Slices

Used/Available (utilization)

1476/30

720

(4.8%)

2053/307

20

(6.7%)

1270/307

20

(4.1%)

Block RAMs

Used/ Available (utilization)

393/456

(86.8%)

449/456

(98.5%)

439/456

(96.2%)

Frequency (MHz) 190.56 189.32 191.72

Throughput (Gbps) 60.98 60.59 61.35

[5] Y, K. Chang and H.-M. Chen, "Set Pruning Segment

Trees for Packet Classification," The IEEE 25th

International Conference on Advanced Information

Networking and Applications (AINA-2011), 2011.

[6] H. C. Chen, “Recursive Endpoint Based Hyper-

Cutting Scheme For Packet Classification,”

Unpublished thesis for degree of master of computer

science and information engineering, National Cheng-

Kung University, Tainan, Taiwan, R.O.C, 2011.

[7] H. M. Chen, “Partitioned Set-Pruning Segment Trees

For Packet Classification,” Unpublished thesis for

degree of master of computer science and information

engineering, National Cheng-Kung University, Tainan,

Taiwan, R.O.C, 2011.

[8] S. Dharmapurikar, H. Song, J. Turner, and J.

Lockwood, “Fast Packet Classification Using Bloom

Filters,” Proc. ACM/IEEE ANCS, pp. 61-70, 2006.

[9] P. Gupta, and N. McKeown, “Classifying packets with

hierarchical intelligent cuttings,” IEEE Micro, vol. 20,

no. 1, pp. 34-41, Jan.Feb. 2000.

[10] P. Gupta, and N. McKeown, “Algorithms for packet

classification,” IEEE Network, vol. 15, no. 2, pp. 24-

32, Mar.-Apr. 2001.

[11] F. Geraci, M. Pellegrini, and P. Pisata, “Packet

classification via improved space decomposition

techniques,” in Proceedings of 24th Annual Joint

Conference of the IEEE Computer and

Communications Societies, 2005, pp. 304-312 vol. 1.

[12] V. Srinivasan, G. Varghese, S. Suri et al., “Fast and

scalable layer four switching,” in Proceedings of the

ACM SIGCOMM '98 conference on Applications,

technologies, architectures, and protocols for

computer communication, 1998, pp. 191-202.

[13] http://www.arl.wustl.edu/~hs1/PClassEval.html

[14] W. Jiang and V. K. Prasanna. “Large-Scale Wire-

Speed Packet Classification on FPGAs,” Proc. FPGA,

pp. 219-228, 2009.

[15] A. Kennedy, X. Wang, Z. Liu, and B. Liu, “Low

Power Architecture for High Speed Packet

Classification,” Proc. ACM/IEEE ANCS, pp. 131-140,

2008.

[16] T. V. Lakshman, and D. Stiliadis, “High-speed policy-

based packet forwarding using efficient multi-

dimensional range matching,” in Proceedings of the

ACM SIGCOMM '98 conference on Applications,

technologies, architectures, and protocols for

computer communication, 1998, pp. 203-214.

[17] H. B. Lu and S. Sahni, “O(log W) multidimensional

packet classification, ” IEEE-ACM Transactions on

Networking, vol. 15, pp. 462-472, Apr 2007.

[18] A. Nikitakis and I. Papaefstathiou, “A Memory-

Efficient FPGABased Classification Engine,” Proc.

IEEE FCCM, pp. 53-62, Apr. 2008.

[19] I. Papaefstathiou and V. Papaefstathiou, “Memory-

Efficient 5D Packet Classification at 40 Gbps,” Proc.

IEEE INFOCOM, pp. 1370-1378, 2007.

[20] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet

Classification Algorithms: From Theory to Practice, ”

in Proceedings of the 28th IEEE Conference on

Computer Communications (INFOCOM’09), 2009,

pp. 648 – 656.

[21] Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li and V. K.

Prasanna, “Multi-dimensional Packet Classification

on FPGA: 100 Gbps and Beyond,” Proc. Field-

Programmable Technology, pp. 241-248, Dec. 2010.

[22] V. Srinivasan, S. Suri, and G. Varghese. Packet

classification using tuple space search. in Proceedings

of the ACM SIGCOMM’99 conference on

Applications, Technologies, Architectures, and

Protocols for Computer Communication

(SIGCOMM ’99), 1999, pp. 135 – 146.

[23] S. Singh, F. Baboescu, G. Varghese, and J. Wang,

“Packet classification using multidimensional cutting,”

in Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for

computer communications, 2003, pp. 213–224.

[24] H. Song and J. W. Lockwood, “Efficient Packet

Classification for Network Intrusion Detection Using

FPGA,” Proc. ACM FPGA, pp. 238-245, 2005.

[25] D. E. Taylor, and J. S. Turner, “ClassBench: A packet

classification benchmark,” IEEE-ACM Transactions

on Networking, vol. 15, no. 3, pp. 499-511, Jun. 2007.

[26] D. E. Taylor, “Survey and taxonomy of packet

classification techniques,” ACM Computing Surveys,

vol. 37, no. 3, pp. 238-275, Sep. 2005.

[27] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar.

“EffiCuts: Optimizing Packet Classification for

Memory and Throughput,” in Proceedings of the 2010

conference on Applications, technologies,

architectures, and protocols for computer

communications, 2010, pp. 207-218

[28] Jeffrey M. Wagner, Weirong Jiang and Viktor K.

Prasanna, “A SCALABLE PIPELINE

ARCHITECTURE FOR LINE RATE PACKET

CLASSIFICATION ON FPGAS,” Proc. Parallel and

Distributed Computing and Systems, 2009.

[29] Xilinx, "Virtex-5 Family Overview", Product

Specification, DS100 (v5.0), Feb. 6, 2009, at

http://www.xilinx.com.

http://www.xilinx.com/

